NP-complete problem - translation to ρωσικά
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

NP-complete problem - translation to ρωσικά

PROPERTY OF COMPUTATIONAL PROBLEMS THAT IS A SPECIAL CASE OF NP-COMPLETENESS
Strongly NP-hard; Strongly NP-complete

NP-complete problem         
  • Levin]] proved that each easy-to-verify problem can be solved as fast as SAT, which is hence NP-complete.
  • P≠NP]], while the right side is valid under the assumption that P=NP (except that the empty language and its complement are never NP-complete, and in general, not every problem in P or NP is NP-complete)
  • reductions]] typically used to prove their NP-completeness
COMPLEXITY CLASS
NP-complete problem; NP-complete problems; NP complete; NP completeness; NP-C; Np complete; Np-complete; NP-complete language; Np-complete problem; NP-Completeness; Np completeness; Non-deterministic polynomial-time complete; NP-Complete; Nondeterministic Polynomial Complete; Non polynomial complete; Np-Complete; NP-complete; NP-incomplete
полная задача, переборная задача, полиномиально разрешимая на недетерминированных машинах
NP-completeness         
  • Levin]] proved that each easy-to-verify problem can be solved as fast as SAT, which is hence NP-complete.
  • P≠NP]], while the right side is valid under the assumption that P=NP (except that the empty language and its complement are never NP-complete, and in general, not every problem in P or NP is NP-complete)
  • reductions]] typically used to prove their NP-completeness
COMPLEXITY CLASS
NP-complete problem; NP-complete problems; NP complete; NP completeness; NP-C; Np complete; Np-complete; NP-complete language; Np-complete problem; NP-Completeness; Np completeness; Non-deterministic polynomial-time complete; NP-Complete; Nondeterministic Polynomial Complete; Non polynomial complete; Np-Complete; NP-complete; NP-incomplete
NP-полнота
NP problem         
  • s2cid=14352974 }}</ref>
  • quadratic fit]] suggests that the algorithmic complexity of the problem is O((log(''n''))<sup>2</sup>).<ref name=Pisinger2003>Pisinger, D. 2003. "Where are the hard knapsack problems?" Technical Report 2003/08, Department of Computer Science, University of Copenhagen, Copenhagen, Denmark</ref>
  • NP]], NP-complete, and NP-hard set of problems (excluding the empty language and its complement, which belong to P but are not NP-complete)
UNSOLVED PROBLEM IN COMPUTER SCIENCE ABOUT TIME COMPLEXITY
P=NP; P and NP; P = NP; P==NP; P≠NP; P!=NP; P/=NP; P versus NP; P vs. NP; P vs NP; P=NP?; NP problem; P Versus NP Problem; P=np; P vs np; Complexity classes P and NP; P=NP problem; P ≠ NP; P is not NP; NP=P; NP = P; P Versus NP; Succinct problem; Succinct problems; P=?NP; P vs. NP problem; P = NP problem; Algebrization; P = NP?; P vs NP problem; Vinay Deolalikar; P≟NP; P ≟ NP; P ? NP; NP conjecture; P conjecture; NP versus P problem; NP=P problem; Smale's third problem; User:Robert McClenon/Vinay Deolilakar; Vinay Deolilakar; P/NP Problem; P v NP; P = np; P≟NP problem; Np vs p; P versus NP conjecture; NP versus P conjecture
недетерминистическая задача полиномиального времени

Ορισμός

Непер
I Не́пер

Нейпир (Napier) Джон (1550, Мерчистон-Касл, близ Эдинбурга, - 4.4.1617, там же), шотландский математик, изобретатель Логарифмов. Учился в Эдинбургском университете. Основными идеями учения о логарифмах Н. овладел не позднее 1594, однако его "Описание удивительной таблицы логарифмов", в котором изложено это учение, было издано в 1614. В этом труде содержались определение логарифмов, объяснение их свойств, таблицы логарифмов синусов, косинусов, тангенсов и приложения логарифмов в сферической тригонометрии. В "Построении удивительной таблицы логарифмов" (опубликовано 1619) Н. изложил принципы вычисления таблиц. Кинематическое определение логарифма, данное Н., по существу равносильно определению логарифмической функции через дифференциальное уравнение. Н. принадлежит также ряд удобных для логарифмирования формул решения сферических треугольников.

Соч.: Mirifici logarithmorum Canonis descriptio; ejusque usus, in utraque, trigonometria, utetiam in omni logistica mathematica... explicatio, Edin., 1614.

Лит.: История математики, т. 2, М., 1970.

II Не́пер

единица логарифмической относительной величины (натурального логарифма (См. Натуральный логарифм) отношения двух одноимённых физических величин). Названа по имени Дж. Непера, обозначается - нп или Np. 1 нп = In (F2/F1) при F2/F1 = e, где F2 и F1 - физические "силовые" величины (напряжения, силы тока, давления и т.п.) и е - основание натуральных логарифмов. Н. применяется в основном при измерениях ослабления (затухания) электрических сигналов в линиях связи. Соотношение с др. единицами логарифмической относительной величины - Белом и Децибелом: 1 нп = 2lgе б ≈ 0,8686 б = 8,686 дб.

Βικιπαίδεια

Strong NP-completeness

In computational complexity, strong NP-completeness is a property of computational problems that is a special case of NP-completeness. A general computational problem may have numerical parameters. For example, the input to the bin packing problem is a list of objects of specific sizes and a size for the bins that must contain the objects—these object sizes and bin size are numerical parameters.

A problem is said to be strongly NP-complete (NP-complete in the strong sense), if it remains NP-complete even when all of its numerical parameters are bounded by a polynomial in the length of the input. A problem is said to be strongly NP-hard if a strongly NP-complete problem has a polynomial reduction to it; in combinatorial optimization, particularly, the phrase "strongly NP-hard" is reserved for problems that are not known to have a polynomial reduction to another strongly NP-complete problem.

Normally numerical parameters to a problem are given in positional notation, so a problem of input size n might contain parameters whose size is exponential in n. If we redefine the problem to have the parameters given in unary notation, then the parameters must be bounded by the input size. Thus strong NP-completeness or NP-hardness may also be defined as the NP-completeness or NP-hardness of this unary version of the problem.

For example, bin packing is strongly NP-complete while the 0-1 Knapsack problem is only weakly NP-complete. Thus the version of bin packing where the object and bin sizes are integers bounded by a polynomial remains NP-complete, while the corresponding version of the Knapsack problem can be solved in pseudo-polynomial time by dynamic programming.

From a theoretical perspective any strongly NP-hard optimization problem with a polynomially bounded objective function cannot have a fully polynomial-time approximation scheme (or FPTAS) unless P = NP. However, the converse fails: e.g. if P does not equal NP, knapsack with two constraints is not strongly NP-hard, but has no FPTAS even when the optimal objective is polynomially bounded.

Some strongly NP-complete problems may still be easy to solve on average, but it's more likely that difficult instances will be encountered in practice.

Μετάφραση του &#39NP-complete problem&#39 σε Ρωσικά